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Principles of chaperone-mediated protein folding

F. ULRICH HARTL

Howard Hughes Medical Institute and Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer

Center, 1275 York Avenue, New York, New York 10021, U.S.A.

SUMMARY

The recent discovery of molecular chaperones and their functions has changed dramatically our view of
the processes underlying the folding of proteins in vivo. Rather than folding spontaneously, most newly
synthesized polypeptide chains seem to acquire their native conformations in a reaction mediated by
chaperone proteins. Different classes of molecular chaperones, such as the members of the Hsp70 and
Hsp60 families of heat-shock proteins, cooperate in a coordinated pathway of cellular protein folding.

1. INTRODUCTION

In vitro, many unfolded proteins are able to fold to their
native conformations spontaneously. This observation,
first made by Anfinsen about three decades ago,
demonstrated that all the information necessary to
specify the three-dimensional structure of a protein is
contained in its linear amino acid sequence (Anfinsen
1973). Consequently, it had been assumed that the de
novo folding of proteins upon synthesis on ribosomes
also generally occurs spontaneously. This view has
changed profoundly over the past six years, due to the
discovery of a large number of proteins, known as
‘molecular chaperones’, which are essential for cellular
protein folding and occur ubiquitously in all types of
cell in the cytosol as well as in various subcellular
membrane compartments (Ellis 1987; Hartl et al.
1994).

The molecular chaperone concept

The term ‘molecular chaperone’ was coined for
nucleoplasmin, a protein that binds to histones and
mediates nucleosome assembly (Laskey et al. 1978).
Molecular chaperone proteins of several structurally
unrelated classes, many of them stress or heat-shock
proteins, are now known to participate in a variety of
cell functions. They facilitate de novo protein folding
under normal growth conditions, prevent protein
aggregation under stress conditions and stabilize
polypeptide chains in an unfolded state for trans-
location across organellar membranes (Hendrick &
Hartl 1993; Ellis 1994 ; Hartl ef al. 1994; Stuart et al.
1994). Several lines of cell biological research contri-
buted to the formulation of the novel concept of
assisted protein folding: the isolation of not-yet-
assembled subunits of ribulose bisphosphate carboxy-
lase oxygenase (Rubisco) in chloroplasts as a complex
with a high molecular mass binding-protein, the
Rubisco subunit binding protein (RSBP), suggested a
critical role of this component in Rubisco assembly
(Barraclough & Ellis 1980). RSBP was later found to
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be the chloroplast homolgue of E. coli GroEL and
mitochondrial Hsp60, which have been classified as
members of the Hsp60 or ‘chaperonin’ family of
molecular chaperones (Hemmingsen ef al. 1988,
McMullin & Hallberg 1988). Mutations in the genes
encoding GroEL and its co-factor GroES had been
reported to affect the assembly of bacteriophage
particles (Georgopoulos et al. 1973). The oligomeric
assembly of proteins imported into mitochondria from
the cytosol was found to be defective in a yeast strain
containing a mutated version of mitochondrial Hsp60
(Cheng et al. 1988). The primary function of Hsp60
was subsequently shown to be to mediate the folding of
monomeric polypeptide chains (Ostermann ef al. 1989)
and the subunits of oligomeric proteins in an ATP-
dependent reaction (Zheng et al. 1993).

As an independent line of evidence, the Hsp70s,
another major class of molecular chaperones, were
proposed to protect certain proteins from denaturation
under heat-stress (Pelham 1986) and were shown to
associate with ribosome-bound polypeptides (Chirico
et al. 1988; Deshaies ef al. 1988 ; Beckmann ¢t al. 1990;
Frydman et al. 1994). A common theme in all these
studies was that the binding proteins stabilized the
otherwise unstable conformations of non-native pro-
teins which are prone to aggregation. It is now
generally believed that molecular chaperones shield
the hydrophobic sequences or surfaces exposed by
conformational intermediates on the protein folding
pathway. They do not recognize a consensus sequence
motif and therefore have the ability to prevent the
incorrect intra- and intermolecular folding and as-
sociation of many different proteins. The Hsp70s and
Hsp60s then promote correct folding by repeatedly
binding and releasing their substrate proteins regulated
by ATP binding and hydrolysis. In this process the
molecular chaperones do not typically function as
catalysts of protein folding. Generally, they increase
the yield of a folding reaction rather than its speed.
Once a protein has reached its native state, it no longer
presents hydrophobic surfaces for chaperone binding.
However, exposure to certain forms of cellular stress,
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such as heat-stress, may cause the partial or complete
unfolding of proteins, leading to their renewed in-
teraction with chaperones.

2. CELLULAR FOLDING PATHWAYS

The function of the Hsp70s and Hsp60s in protein
folding is understood in considerable detail. Both
groups of chaperones play an essential role in the
folding of newly synthesized polypeptides in the cytosol,
as well as in mitochondria and chloroplasts (Hendrick
& Hartl 1993; Hartl et al. 1994). Here they cooperate
in what appears to be a general pathway of cellular
protein folding (figure 1) (Langer et al. 1992 ; Frydman
et al. 1994; Stuart et al. 1994). The Hsp70s interact
with the nascent polypeptide at a very early stage of
chain elongation. Given the high density of total
protein in the cytosol (20-309,) and of unfolded
protein molecules (up to 30-50 pm in E. colz), this
interaction appears to be necessary to prevent the

Ribosome

ATP

ADP

aggregation of nascent chains or their unfavourable
association with the ribosome surface at a point when
the partially synthesized and therefore conformation-
ally restricted polypeptide is not yet able to form a
stable tertiary structure. At a later stage, the not yet
folded polypeptide can be transferred to a chaperonin
of the Hsp60 family (in bacteria, mitochondria and
chloroplasts) or the TCP-1 family (in the eukaryotic
cytosol), which mediates folding to the native state
(Langer et al. 1992; Frydman et al. 1994). In the case
of the TCP-1 ring complex (TRiC), this transfer can
occur co-translationally before completion of synthesis
(Frydman et al. 1994).

(a) Mechanism of the Hsp70 system

The Hsp70s have the ability to bind short, extended
peptide segments of seven or cight residues which are
enriched in hydrophobic amino acids (Flynn et al.
1991; Blond-Elguindi et al. 1993). Only more recently
has it been realized that for full function the Hsp70s

GroES

Figure 1. Model for the pathway of protein folding in the E. coli cytosol. The polypeptide chain emerging {rom the
ribosome is bound by DnaJ and DnaK (Hsp70) (Hendrick et al. 1993 ; Gaitanaris et al. 1994). The direct interaction
between DnaK and Dna] in the presence of ATP leads to the formation of a ternary complex between nascent chain,
DnaK and Dna]J in which DnaK is in the ADP-state. This complex dissociates upon the GrpE-dependent dissociation
of ADP and the binding (not hydrolysis) of ATP to DnaK (Szabo ¢t al. 1994). The protein may then fold to the native
state by multiple rounds of interaction with the DnaK, DnaJ, GrpE system or is transferred for final folding to
GroEL/GroES (Langer et al. 19924). We assume that a large fraction of cytosolic proteins have to interact with both

chaperone systems to reach the native state.
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depend on the regulation by further proteins. In E. coli
the Hsp70, called DnaK, cooperates with the cha-
perone DnaJ and the nucleotide exchange factor GrpE,
proteins of about 43 kDa and 23 kDa, respectively
(Georgopoulos 1992). Both DnaK and DnaJ bind
nascent  polypeptide  chains  cotranslationally
(Hendrick et al. 1993; Gaitanaris et al. 1994; Kudlicki
et al. 1994), whereby Dna] seems to mediate the
loading of DnaK onto the elongating chain (figure 1).
The interaction of Dna] with DnaK accelerates the
hydrolysis of DnaK-bound ATP to ADP (Liberek et al.
1991) and stabilizes the ADP-state of DnaK which has
a high affinity for unfolded polypeptide (Palleros et al.
1993). As a result, a stable ternary complex consisting
of polypeptide substrate, Dna] and ADP-bound DnaK
is formed (Langer ef al. 1992; Szabo et al. 1994). GrpE
then functions as a nucleotide exchange factor for
DnaK in dissociating the bound ADP, whereupon
ATP binding to DnaK causes the release of the
polypeptide substrate (Szabo et al., 1994). This allows
the transfer of the unfolded protein to GroEL, the
bacterial Hsp60 (Langer et al. 1992). At least in vitro,
the folding of certain proteins may be achieved through
ATP-dependent cycles of binding and release to DnaK
and Dna] alone (Schroder et al., 1993; Szabo et al.,
1994). In vivo, however, the primary function of the
Hsp70 system seems to be in maintaining the poly-
peptide chain in a non-aggregated state, competent for
folding by the chaperonin. The eukaryotic cytsosol
contains several DnaJ homologues (Caplan & Douglas
1993), but a structural or functional equivalent of
GrpE has not yet been identified in this compartment.

(b) Mechanism of the chaperonin system

While the Hsp70 and DnaJ proteins function as
monomers or dimers, the chaperonin of E. coli, GroEL,
is a large complex consisting of two stacked rings of
seven identical 60 kDa subunits, forming a cylinder
with a central cavity (Hendrix 1979; Hohn et al. 1979;
Langer et al. 1992 b; Saibil et al. 1993 ; Braig et al. 1994).
GroEL has an essential cofactor, GroES, a single
heptameric ring of 10 kDa subunits that binds to
GroEL and .increases the cooperativity of ATP hy-
drolysis in the GroEL ring system. Although this
regulation is not required for the ATP-dependent
release of bound protein from GroEL per se, with many
substrate proteins it is necessary to make the release
reaction productive for folding. Under most conditions,
binding of GroES to either end of the GroEL cylinder
strongly reduces the affinity of the opposite end for
binding a second GroES (Langer et al. 1992; Saibil et
al. 1993; Chen et al. 1994). This negative cooperativity
of GroES binding is decreased at high concentrations
of Mg®* (15-50 mm) and at elevated pH (pH 7.7-8.0),
conditions which allow the formation of symmetrical
GroES:GroEL:GroES complexes (Llorca et al. 1994;
Schmidt et al. 1994). A recent kinetic analysis of the
GroEL~GroES reaction cycle using the new technique
of surface plasmon resonance (Biacore™) failed to
demonstrate the functional significance of these so-
called ‘football’ structures (M.K. Hayer-Hartl, un-
published results).
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The interaction between GroEL and GroES is
dynamic, both in the absence and presence of substrate
polypeptide. The asymmetrical binding of GroES
stabilizes the seven subunits of GroEL that are in
contact with GroES in a tight ADP state, resulting in
a 509, inhibition of the GroEL ATPase (Martin et al.
1993; Todd et al. 1993). Binding and hydrolysis of ATP
in the opposite heptamer of GroEL causes the transient
release of the tightly bound ADP and GroES. This
cycling of GroES between bound and free states is
normally slow but is accelerated by the association of
polypeptide substrate with GroEL (Martin et al. 1993).
Polypeptide binding stimulates the ATPase activity of
GroEL (Martin ef al. 1991; Jackson et al. 1993). The
unfolded polypeptide binds initially to the GroEL ring
that is not covered by GroES (figure 2). This facilitates
the release of the tightly bound ADP and the
dissociation of GroES. Upon ATP binding, GroES
may then reassociate with the protein-containing ring
of GroEL, inducing the ATP-hydrolysis-dependent
release of the bound polypeptide (Martin et al. 1993).
Interestingly, binding of GroES causes a massive
outwards movement of the apical domains of the
GroEL subunits, creating an enclosed, dome-shaped
space with a maximum height and width of 70 A
(figure 2) (Chen et al. 1994). GroES could initially
make contact with the outer surface of the GroEL
cylinder, triggering further domain movement, thus
transiently displacing the polypeptide substrate into
the cavity for folding (Fenton et al. 1994; Hartl 1994).
At least partial folding may thus occur in a shielded
microenvironment, before the polypeptide emerges
from the chaperonin cavity (Martin et al. 1993).
Multiple rounds of binding and release to GroEL may
be necessary for completion of folding (Martin et al.
1991). Alternatively, GroES may exert its function
aiding productive protein release from the GroEL ring
that is not occupied by the folding polypeptide. Both
mechanisms of GroES action may not be mutually
exclusive (figure 2).

GroEL binds its substrate in the conformation of a

.compact, yet flexible, molten globule-state which

exposes hydrophobic surfaces to solvent (Martin et al.
1991; Hayer-Hartl et al. 1994; Robinson et al. 1994).
The structure-based mutational analysis of GroEL
indeed suggests the presence of a complementary
hydrophobic binding surface that lines the cavity of the
cylinder (Fenton et al. 1994). In contrast to Hsp70,
GroEL does not seem to recognize short peptide
sequences in extended conformations (Landry et al.
1992).

The exact extent of folding that can occur while a
polypeptide is in association with the chaperonin,
either bound to its surface or upon release into its
cavity, remains to be defined. Evidence has been
presented that the substrate polypeptide is released
into the bulk solution in a conformation that is
significantly less prone to aggregation than the con-
formation initially bound by the chaperonin (Martin e¢
al. 1991). While small, single-domain proteins, such as
barnase, may reach their native state in association
with GroEL (Gray & Fersht 1993), other proteins can
be released before they have reached the native state
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Figure 2. Model for the ATP-dependent interaction between
GroEL, GroES and folding polypeptide. D (bold), the high-
affinity ADP state in the seven subunits of GroEL which are
bound to GroES; D (not bold), the lower ADP affinity of the
subunits in the opposite toroid which may hydrolyse ATP
(Martin et al. 1993); T, the subunits in a GroEL toroid in the
ATP-bound state; I, polypeptide substrate as compact
folding intermediate; I*, folding intermediate part way
advanced towards the native state (for polypeptides with
separate domains or subdomains); N, native protein. 1,
Polypeptide binding facilitates dissociation of tightly bound
ADP and GroES. 2, Polypeptide transiently bound in
nucleotide-free toroid. 3, ATP and GroES rebind. GroES
associates either with free GroEL ring (3a) or with
polypeptide-containing ring (3b). ATP-hydrolysis leads to
polypeptide release (4a) and incompletely folded polypeptide
rebinds in (1). In 3b, polypeptide is transiently enclosed in
the central cavity and is free to fold. ATP-hydrolysis in the
GroES-bound toroid then generates the tight ADP-state (not
shown). ADP dissociates upon ATP-hydrolysis in the
opposite ring, causing dissociation of GroES and allowing
polypeptide release. Polypeptide may rebind in (2).
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and subsequently re-bind to the chaperonin (Martin et
al. 1991; Weissman et al. 1994).

3. PERSPECTIVES

The functional cooperation between molecular chaper-
ones in protein folding is emerging as a common theme
from a number of recent studies (Hendrick & Hartl
1993; Hartl et al. 1994). This applies also to the
endoplasmic reticulum, the compartment that is
responsible for the folding and assembly of secretory
proteins. During translocation across the endoplasmic
reticulum (ER) membrane, secretory proteins probably

Phil. Trans. R. Soc. Lond. B (1995)

interact first with the Hsp70 homologue BiP, followed
by interactions with various chaperones (Helenius et al.
1992), including the membrane-bound protein cal-
nexin (Bergeron et al. 1994). Unlike the cytosol, the
environment of the ER lumen is oxidizing and contains
the enzyme protein disulphide isomerase which acceler-
ates the correct formation of disulphide bonds (Free-
dman 1989). A ring-shaped chaperonin is apparently
absent from the ER.

With respect to the protein folding problem, tra-
ditionally the domain of biophysicists and theore-
ticians, it will be interesting to see whether molecular
chaperones may be able to influence the pathways of
protein folding or even the final outcome of a folding
reaction. Are there situations where the information
specified in the linear sequence of amino acid residues
is not sufficient for folding to the native state? Has the
coevolution of proteins and chaperones perhaps
favoured certain folding pathways over others? To
address these questions, the conformational dynamics
of chaperone-substrate protein interactions will have to
be resolved.

Another important direction of research will be the
analysis of protein folding in the context with trans-
lation. Very little is known about the very early events
of folding that may occur when the growing poly-
peptide chain is still within the ribosomal exit tunnel or
groove. To what extent does the formation of secondary
and tertiary structure proceed co-translationally? Here
the final goal would be the in vitro reconstitution of
translation and folding of a nascent polypeptide chain
with all the necessary components in purified form.

Reserach in the author’s laboratory is supported by the
National Institutes of Health and by the Howard Hughes
Medical Institute.
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